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ABSTRACT 

Zonoids whose polars are zonoids cannot have proper faces other than 

vertices or facets. However, there exist non-smooth zonoids whose polars 

are zonoids. Examples in R 3 and R 4 are given. 

I n t r o d u c t i o n  

A z o n o t o p e  in R ~ is a vector sum of segments. A z o n o i d  in R'~ is a limit of 

zonotopes in I~ n with respect to the Hausdorff metric. The sum of the centers of 

the segments defines a center of symmetry  for a zonotope, and so by definition 

every zonoid is centrally symmetric,  compact and convex. Consequently, every 

zonoid is the unit ball of some norm. The special structure of zonoids allows a 

more precise s ta tement  about  what kind of norms enter the discussion of zonoids. 

Writing down the support  function of a zonotope we see tha t  zonoids are pre- 

cisely unit balls of quotients of L~o spaces. Since every two-dimensional convex, 

centrally symmetr ic  and compact  set is a zonoid, every two-dimensional Banach 

space is isometric to a subspace of L1. Therefore there is no zonoid theory in R 2. 

For detailed discussions concerning zonoid theory see [1, 5, 12]. 

A well known theorem in Functional Analysis, due to Grothendieck, asserts 

that  among infinite-dimensional Banach spaces, the ones which are isomorphic 

both to a subspace of L1 and to a quotient-space of Loo are isomorphic to a Hilbert 

space. (For a proof see [8].) A natural  question is whether this "isomorphic" 

theorem has an "isometric" analogue. E. Bolker conjectured in [1] (conjecture 6.8) 

tha t  there is a finite-dimensional isometric version of Grothendieck's theorem. 
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Bolker formulated his conjecture in the language of zonoids, which amounts to 

the conjecture that  a zonoid whose dimension is at least 3 and whose polar is 

also a zonoid must be an ellipsoid. 

Six years later, R. Schneider in [10] constructed examples of zonoids whose po- 

lars are also zono~.ds, that are not ellipsoids, and consequently Bolker's conjecture 

was disproved. The infinite-dimensional isometric problem is still open. 

Schneider used spherical harmonics to prove that it is possible to apply smooth 

perturbations to the Euclidean ball in R '~, such that the resulting bodies are 

zonoids whose polars are zonoids. Since the set of zonoids in ~n, where n _> 3, is 

closed and nowhere dense with respect to the Hausdorff metric, the perturbations 

had to be performed with respect to an essentially different metric. The metric 

employed by Schneider involved high-order derivatives of the support function. 

It seemed plausible after Schneider's work that zonoids whose polars are zonoids 

must be smooth, and hence strictly convex. 

In §2 of this work an example of a non-smooth zonoid whose-polar is also 

a zonoid is presented. It consists of forming the Minkowski sum of a three- 

dimensional Euclidean unit ball and a concentric circle of radius 1. Similar ex- 

amples exist in ]~4. 

Although smoothness of zonoids whose polars are zonoids cannot be guaran- 

teed, it nevertheless cannot be lost in an arbitrary fashion. §1 contains some 

information in this direction. The result is 

THEOREM: Suppose K = B + C is a convex body in R '~, where n >_ 3 and B, C 

are convex, compact and centrally symmetric subsets o fR  n . I f  1 < dim C < n - 2  

then the polar of K is not a zonoid. 

It is well known that  every face of a zonoid Z is a translate of a zonoid which 

is a summand of Z ([1], Th. 3.2, and also [11], p. 189). Therefore, the theorem 

implies: 

COROLLARY: ~1 c n ~ 3 and Z is an n-dimensional zonoid whose polar is also a 

zonoid, then the boundary of Z does not contain proper faces whose dimension 

is different from n - 1 or zero. 

As far as the dimension is concerned, the examples of §2 show that  these 

statements cannot be improved. 

Another immediate corollary of the theorem is that the polar of a zonotope 

whose dimension i~ at least 3 is not a zonotope. This had been proved long 

ago by M. A. Perles, and by E. Bolker (cf. [1]). Both proofs are based on the 
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special polytopal structure of a zonotope. In particular, Perles shows that  every 

zonotope whose dimension is at least 3 has more vertices than facets. 

§1. P r o o f  o f  t h e  t h e o r e m  

A fundamental  property of zonoids which is exploited below appears as Theorem 

3.2 in [1]. It  is stated here as a lemma. 

LEMMA 1.1: Every  proper  face o f  a zonoid K is a translate o f  a zonoid o f  lower 

dimension which is a s u m m a n d  of  K .  

A summand can be either direct or not. B is said to be a direct summand 

of K if K -- B + C and dim B + dim C = dim K.  In such cases the Minkowski 

sum is written in the form K -- B @ C. Due to this distinction between types 

of summands,  the proof of the theorem will be divided into two parts. The first 

part  consists of a proposition which settles the case of direct summands.  The 

restriction dim C < n - 2 that  appears in the formulation of the theorem does 

not play any role in the setting of direct summands. 

PROPOSITION 1.2: A polar o f  a zonoid whose dimension is at least 3 does not  

have non-trivial direct summands .  

Proof: Assume that  K is a polar of a zonoid, dim K _> 3 and K does have 

non-trivial  direct summands. Applying a suitable linear transformation, it can 

be assumed that  K -- B @ C where span B and span C are mutually orthogonal. 

Let P denote the orthogonal projection onto span B and let Q = I - P. Then 

the norm of K can be written as 

(1 .1 )  IIxlIK = ma {llP llB, I I Q x l I c } ,  V x  • 

Choose any point x on the boundary of B, and any point y on the boundary 

of C. Then 

(1 .2 )  II(x+Y)+(x--Y)IIK+II(x+Y)--(x--Y)IIK = 4 = 2 ( l lx  + YlIK + --  YlI ) • 

By assumption, K ° is a zonoid. Hence there is a positive measure u on the sphere 

such that  

(1.3) IlzlIK = f I(z,u)ldu(u),  Vz • R n. 
Js  n - - 1  

For every x • OB and y • OC consider two functions defined on the sphere by 

fy,x (u) = (x + y, u) and gy,x (u) = (z  - y, u). 
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Then by (1.3) and (1.2), for the norm in Ll(du),  and for f = fx,y and g = gx,y, 

one has 

(1.4) l l f  + gll + l l f  - gll = 2 ( l l f l l  + l lgll) • 

Such an equality can occur only if 

(1.5) f (u)g(u)  = 0 for u-almost every u • S n-1. 

This implies 

(1.6) s u p p v  C {u • H a - l :  ](u,x}[ = [(u,y}[} Vy  • OC, Vx  • OB. 

Observe that  if x l , . . . ,  xn is a linear basis for R '~ then the set 

(1.7) • s -l: I< ,xl>l = I<u,x,)l . . . . .  

is finite (it contains at most 2 n points). Since the dimension of K is at least 

three, the dimension of one of the summands must be at least two, and so (1.6) 

cannot  hold for every choice of points x E OB and y E OC, due to the previous 

observation. This contradiction proves the proposition. | 

The second part  of the proof consists of proving the theorem for non-direct 

summands.  Our original proof was for a one-dimensional summand,  i.e, a seg- 

ment,  but as was kindly pointed out by R. Schneider, the same argument yields 

the result as stated here. 

Let K be a centrally symmetric,  compact  and convex subset of R '~ . Given any 

subset U C R ~, consider the following subset of the boundary of K : 

A(K ,U)  = 

{x E a K  : K has an outer normal at x which is orthogonal to span U}. 

Concerning such sets the following Lemma holds. 

LEMMA 1.3: Suppose K is a centrally symmetric, compact and convex subset 

of R n, such that d i m K  > 2. Let U C R n denote a subset whose span is of  

dimension at  most  n - 2. Then for every (n - 1)-dimensional subspace H the 

intersection A(K,  U) n H is not empty. 

Proo£" One may assume that  U is a subspace of dimension n - 2. Let H be a 

subspace of dimension n - 1. 
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First assume that  K is smooth and strictly convex. Let GK denote the Gauss 

map, which takes every point x on OK to the outward unit normal of K at x. 

Then GK is a homeomorphism between OK and S n-1. 

The intersection U±NS n-1 is a great circle. Since the set A(K, U) is the inverse 

image of this intersection under the Gauss map, it is a connected, centrally 

symmetric subset of the boundary of K and hence meets H. This proves the 

assertion under the special assumption on K. 

The proof for general K is now concluded by an approximation argument. 

Let K be as in the formulation of the lemma. Choose a sequence (Ki)ieN of- 

centrally symmetric, smooth and strictly convex bodies converging to K.  For 

each i • N there exists a pair (xi, ui) • H × U ± such that  xi • OKi and ui is an 

outer normal vector Ki at xi, thus h(Ki, ui) = (xi, ui), where hiKi, .) denote the 

support functions. The sequence (xi, ui) has a convergent subsequence, and one 

may assume that  this sequence itself converges to a pair (x, u). Since the support  

function h is simultaneously continuous in both variables, one gets h(K, u) = 

(z,u).  If h(K,u) ~t O, then x • OK, and from (x,u) • H × U ± one gets 

x • A(K,U) A H. On the other hand, if h(K,u) = 0, then since d i m K  > 2, 

there exists a point y • OK n H, and this point is in the set A(K, U) N H. | 

Proof of the theorem: The main idea is similar to the one which appeared 

above, in the proof of the proposition. Suppose K ° (the polar of K)  is a zonoid, 

K is n-dimensional and has a non-direct summand C where 1 < dim C <_ n - 2. 

Then K -- B + C, for some centrally symmetric compact and convex subset B 

of R n. For every x • A(B, C), the set x + C lies entirely on the boundary of K.  

Therefore, 

(1.8) = 2 = II +cllK+ll --cllK, • AiB, C), V c •  C. 

Arguing similarly as in the proof of the proposition, an equality in the triangle 

inequality in LI (S  n-a, u) is obtained, where the vectors are the functions 

(1.o) f~,c(u) = ix + c, u) and g~,c(u) = ix - c, u>, 

and c • AiB,  C) is arbitrary. Since K ° is a zonoid, there exists a positive Borel 

measure v on the sphere which satisfies an equation of the form (1.3). Being 

positive, the measure must assign all its mass to the set of points where the 

functions from (1.9) have the same sign. Therefore, 

(1.10) suppu  C {u e S n - l :  {(u,x)l >_ [/u,c>{} Vx • A(B,C),  Vc • C. 
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By Lemma 1.3, for every u C S ~-1 there exists a point x E A ( B ,  C) such that  

x _l_ u, and so from (1.10) the measure is seen to be concentrated on the section 

C ± Cl S n - l ,  whose dimension is ( n -  dim C). But this contradicts the fact that  

the dimension of K is n. This completes the proof of the theorem. | 

§2. T h e  b a r r e l  zono id  

The purpose of this section is to present an example of a non-smooth zonoid 

whose polar is also a zonoid. First, the so-called "barrel zonoid" is introduced 

and some of its properties are discussed. Afterwards the analytic tools to be used 

are presented, followed by a calculation which yields the desired example. The 

main tool here is an inversion formula for the cosine transform, due to Goodey 

and Weil [4]. 

Let B~ denote the n-dimensional euclidean unit ball. For a positive number 
n--1 r > 0, consider the zonoid Bn,r = B~ + r B  2 . It is invariant under rota- 

tions which keep the n ' th  coordinate fixed. Such bodies are called r o t a t i o n a l l y  

s y m m e t r i c .  If 0 <_ ~ <_ ~r denotes the vertical angle in spherical coordinates, 

then the restriction of the norm of Bn,r to the unit sphere depends only on ~o. 

Therefore it can be identified with a function f~ defined on the interval [0, 7r], and 

by symmetry, attention can be restricted to the interval [0, ~r/2]. The rotational 

symmetry implies that  for all dimensions n >_ 3, the norm of B,~ x is represented 

by the same function f~. A simple two-dimensional calculation shows that 

cos qo, if 0 < ~o < tan -1 r, 

(2.1) fr(qo) = 1 , if tan - l r  < ~ < ~r/2. 
r sin ~o + X/1 - r 2 c o s  2 ~o 

In case n = 3 and r = 1 the resulting body is barrel-shaped. Henceforth the name 

"barrel zonoid" will refer to a body of the form B~,~, and B.,1 will be denoted 

by Bn. 

The support function of the barrel-zonoid is the sum of the support functions of 

its summands. Therefore its restriction to the sphere is the function l + r x / 1  - u 2, 

where u,~ denotes the nth coordinate. It is not differentiable at the points 4-era 

which geometrically means that there is no unique supporting hyperplane to the 

polar at the points ie,~. This of course corresponds to the fact that  Bn,r itself 

is not strictly convex. The polar B,~,r is also rotationally symmetric, and in case 

n = 3, r = 1, when it is intersected by a plane parallel to (0, 0, 1) and passing 

through the origin, the result is a symmetric, parabolic curve whose equation 

is easily obtained by means of the radial function of the polar, and is given by 



Vol. 102, 1997 ON ZONOIDS WHOSE POLARS ARE ZONOIDS 7 

[y[ -= (1 - x2)/2, for Ixl 1. Rotating this curve about the interval Ix[ _< 1 yields 

the polar of the three-dimensional barrel (of radius r = 1), and so an explicit 

figure of the polar may be obtained. Its shape resembles that  of an American 

football. 

Let [[. [] denote a norm in R '~. In order to prove that the polar of the unit ball 

determined by the given norm is a zonoid, one needs to find a positive, symmetric 

measure # on the sphere such that 

(2.2) Ilull -- fs~-~ [<u,v)l d~(v), Vu • R n. 

The r.h.s of this equation is the cosine  t r a n s f o r m  of the measure #. Usually the 

cosine transform T : C~(S n-l) ~ C ~ ( S  n - l )  is defined on the space of infinitely 

differentiabte even functions on the unit sphere S ~-1 by 

(Tf)(u) = fs,~-i [(u, v)lf(v) dan-1 (v), 

where ,~n-1 is the spherical Lebesgue measure on S n-1. It is clear that  the same 

formula can be used to transform more general objects than C °* functions on 

the sphere, such as measures. Therefore the equation (2.2) can be viewed as 

(2.3) T#  = [[. I[- 

This equation is well known and has been the subject of many investigations. 

In 1937, A.D. Alexandrov proved that there is at most one symmetric measure 

which solves (2.3). Since then, several other proofs of the same fact were found. 

See, e.g., [7]. 

There does not always exist a symmetric measure # that solves (2.3) for a given 

norm. In fact, it is known that  if the norm is of a polytope, then a solution exists 

only if this polytope is a polar of a zonotope ([11], corollary 3.5.6, p. 188). How- 

ever, Weil [13] showed that  for every norm there exists a symmetric distribution p 

(i.e., a continuous linear functional on the space C~°(sn-1)) whose domain can 

be extended to include the functions [(u, .)1, u C S '~-1, such that p(l(u, ")1) = [lull • 

The fact that  every distribution can be viewed as the cosine transform of a dis- 

tribution follows from the self-duality of T :  C~(S n-l) ~ C~(S "~-1) (a simple 

consequence of Fubini's theorem) and a result by Schneider, asserting that  T is 

onto C~(S'~-I). Therefore (2.3) can always be solved with a distribution in- 

stead of a measure, for any given norm, and the symbol T-l(hg)  acquires a 

precise meaning for every given support function of a centrally symmetric convex 
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body K.  The distribution T -1 (hK) is called the gene ra t i ng  d i s t r i b u t i o n  of the 

convex body K.  It is well known that  positive distributions are in fact positive 

measures. Therefore in the context of zonoids Weil's result is particularly useful, 

because it provides a priori a functional whose positiveness is to be checked. For 

an illustration of this technique, see [4], Th. 5.1. 

The problem is now to prove that  for the norm of the three-dimensional barrel 

zonoid, the generating distribution T -1([[. t[) is positive. To this end an inversion 

formula for the cosine transform shall be used, which involves the spher ica l  

R a d o n  t r a n s f o r m  R :  C~°(S n - l )  ~ C~°(Sn-1), defined by 

(Ry)(u) -  n-ll Y(.) d n-2(v), u e S 

where Wn-1 is the total spherical Lebesgue measure of the unit sphere in R n-1 . 

Let A,~ denote the spherical Laplace operator on S n-1. In [4], Goodey and Well 

prove the following inversion formula: 

(2.4) T -1 - ~ (An + n - 1 ) R  -1 .  
2wn - 1 

It is well known that  the Radon transform is a self-adjoint continuous bijection 

of C ~ ( S  n- l )  to itself (see [6]). Since T and An also have this property, the 

inversion formula can be applied to the dual space of its natural domain, that  is, 

to the space of even distributions. In particular it can be applied to any given 

norm, restricted to the sphere. 

As for the inversion of the Radon transform, it is explained by Gardner in [2] 

that  if f is a rotationally symmetric function on S n-1 and f = Rg, then g is also 

rotationally symmetric and the equation f = Rg becomes 

(2.5) 
2Wn-2W~ll 

f(sin -1 x) - g(cos -1 t)(x 2 - t2) (n-4)12 dt, Xn--3 

for 0 < x < 1 and g(~r/2) = f(0). There is an inversion formula for this equation 

(see [2]). However, for n = 4 it is trivial to invert the equation (2.5) because if 

xf (s in  -1 x) is differentiable, then (2.5) immediately implies 

(2.6) g(cos -1 x) = d ( x f ( s i n - 1  x)), 

for 0 < x < 1. In proving the next claim, this formula will be used. 
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CLAIM: The  barrel zonoid B4,~ is a polar of  a zonoid i f  and only i f  r <_ 1. 

Proof'. (2.6) shall now be applied for n = 4 and for f = f~, the  no rm of B4,r, 

given by  (2.1). Let  x~ = r/x/X + r 2. Then  

x / 1 - x  2, i f 0 < x < x r ,  

f r ( s in  -1 x) = 1 if x~ < x < 1. 
r x + x / 1  r 2 + r 2 x  2'  

T h e  funct ion f~(sin -1 x) has a continuous derivative in [0, 1]. Hence, by (2.6), 

1 - 2x 2 

g(cos -1 x) = ~ '  if 0 < x < x~, 

1 - r 2 

A ( x , r ) ( r x + A ( x , r ) ) 2 ,  i f x ~ < x < l ,  

where  A(x ,  r) = ~/1 - r 2 + r2x 2. 

In  cylindrical  coordinates ,  u = ( x / 1 - x 2 ~ , x ) ,  where ~ E $2; the  four- 

d imensional  spherical  Laplac ian  is given by 

02 ~ x  1 
A4 = (1 - x 2) - -  - 3x + T----27~2 A3. 

Ox 2 1 - x 

In  this formula  A 3 is applied to coordinates  of ~; these are independent  of x. 

Hence, when apply ing  the  Laplacian to  a rota t ional ly  symmet r i c  function, the  

t e r m  containing A3 disappears .  Therefore  the  differential opera to r  which is to 

be  appl ied to g(cos -1 x) is given by 

1( 
D = g - ~  (1 -x2 )~ - - f fx2 -3x  + 3  . 

T h e  calculat ion of the  corresponding derivatives of G(x)  = g(cos -1 x) has to be  

done in the  d is t r ibut ion  sense. The  first derivat ive is an absolutely continuous 

measure  whose densi ty  is given by 

2x 3 -- 3x 
d__G_G = ( ~ _ - - ~ - ~ 2 '  if 0 _< x < x~, 

dx r ( 2 g ( x ,  r) + r x ) ( r x  - A(x ,  r)) 
A 3 ( x , r ) ( A ( x , r ) ~ - - ~ x  ) , i fx~  < x <  1. 

Due  to  the  j u m p  at  the  point  x = xr ,  the  second derivat ive is a sum of a con- 

t inuous measure  and a measure  concent ra ted  a t  the  point  x = x~ (see [3], §2). 

3 
d2G (1 - x2)~/2 if 0 _< x < xr  

dx 2 = 3r2( 1 _ r2 ) + c(r) ~x~. 
AS (x , r )  , i f x r < x < l  

Therefore ,  
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The constant c(r) is given by 

dG dG 
c(r) = lim lim = r(r 2 -t- 1) 2. 

X--I*~r 

Having all the derivatives the differential operator D can be applied directly. The 

result is 

0 i f O < x < x r  r(r 2+1) 
(2.7) T - l ( f r )  = D(G) = 3(1 - -  r 2) if xr < x < 1 + g~" 

87rA 5 (x, r) - 87r 

Evidently, the generating distribution is a positive measure if and only if r < 1. 

The proof of the claim is complete. | 

Remarks: (1) In the special case where n = 4, r = 1, the measure which is 

obtained in (2.7) is particularly simple. It is therefore easy to check directly that  

it represents the polar of B4. Here is the calculation. 

The formula (2.7) shows that the measure in question is concentrated on the 

set {v E S 3 : Iv41 = X / ~ } .  By rotational symmetry, its restriction to each 

one of the three-dimensional spheres comprising its support is proportional to 

the corresponding Lebesgue spherical measure. In order to check this, let e4 = 

(0, 0, 0, 1) and consider the integral 

(2.8) I(Y+ u) ldA2(Y)" e4 ,  

$3Cle4 -I- 

Using invariance the point u can be replaced by the point (0, 0, x/1 - t 2, t), where 

t = u4. Applying spherical coordinates to (2.8) yields the following integral, 

j~o ~ { 2It[ if It[ _ 1/V~ 
Iv/-1-t2cos¢+tlsin~d¢ = 271" 1 if [tl < 1 /v~  2~r 

,/i-:g 
= 47r/l(cos -1 It]), 

where f l  is the norm of the barrel given by (2.1). Hence a (positive) multiple 

of the spherical Lebesgue measure on each one of the spheres {u E S 3 : u4 = 

+ X / ~ }  represents the polar B~, as was required to check. 

(2) Since Bn,r is a central section of Bn+l,r on which there exists an orthogonal 

projection, the fact that  B°+I,~ is a zonoid implies the same for B,~,~. Conse- 

quently, B~,~ is a zonoid for r <_ 1. For the special case r = 1 it is possible to apply 
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the same reasoning as above and obtain an explicit formula for the generating 

distribution of B~. Its density is given by 

cos 2 ~o + 

T_lf(~p) = c (1 + x /~0 -~ )  2 cos 3 ~ o ~ '  

0, 

i f 0 < _ ~ < ~ ,  

z r <  <~r  i f ~ _ ~ _ ~ .  

Here c > 0 is a positive constant. Hence the generating distribution of B~ has an 

L1 (but not L2) density. 

(3) For n > 6 and r > 0, the polar of Bn,r is not a zonoid. Indeed, the 

calculation of this section for the case n -- 6 results in a generating distribution 

that  involves a derivative of a measure concentrated at a point. Consequently, 

the generating distribution of B ° is not a measure. A generalization of this 6,r 

calculation to higher dimensions can be used to answer a question raised by 

Goodey and Well. For more details see [9]. 

It is plausible that  non-smooth zonoids whose polars are zonoids exist in every 

dimension. However, the author is unaware of any examples other than the barrel 

zonoids. 
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